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Abstract
The overlap integral of two associated Legendre polynomials (ALPs) presented
by Mavromatis (Mavromatis H A 1999 J. Phys. A: Math. Gen. 32 2601) is
revised. The results are valid for any product of two ALPs with arbitrary degree
l and order m.

PACS numbers: 02.30.Gp and 02.30.Sa

The overlap integral of P
m1
l1

(x) and P
m2
l2

(x) in the interval [-1, 1] is well known only for the
special case m1 = m2 [1]. However, we cannot find the overlap integral of two ALPs for the
general case l1 �= l2 and m1 �= m2, namely,

I (l1, m1; l2, m2) =
∫ 1

−1
P

m1
l1

(x)P
m2
l2

(x) dx. (1)

Recently a closed expression of the overlap integral of two ALPs involving a single sum
has been derived from equations (5) and (6) given in [2]. The final result given in (7) of [2],
however, is invalid for arbitrary m1 and m2. When (−m1 + m2) is negative, the phase (−1)m1

involved in C(l1, m1; l2, m2) of equation (7) in [2] should be changed to (−1)m2 . This is a
consequence of the restriction m � 0 required by equation (5) of [2]. Hence the use of equation
(5) of [2] will be invalid for the negative (−m1+m2). The coefficients ak are evaluated explicitly
in [3], where

P α,β
n (x)P γ,δ

m (x) =
m+n∑
k=0

akP
λ,µ

k (x). (2)

The formula given in [2] is the special case λ = µ = 0, α = β and γ = δ.
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4188 Comment

For completeness we write out the correct result as

I (l1, m1; l2, m2) = A(l1, m1; l2, m2)
∑

l

D(|m2 − m1|, l)(2l + 1)

×
(

l1 l2 l

0 0 0

) (
l1 l2 l

−m1 m2 m1 − m2

)
, (3)

where

A(l1, m1; l2, m2) = (−1)τ |m2 − m1|2|m2−m1|−2

√
(l1 + m1)!(l2 + m2)!

(l1 − m1)!(l2 − m2)!
, (4)

D(|m2 − m1|, l) is given in (7) of [2] and τ takes the following values:

τ =
{

m1, if m2 � m1,

m2, if m2 < m1.
(5)

This result differs from equation (7) of [2] for the phase factor. The two cases ofτ were not
considered in [2]. This result can also be understood from the symmetry I (l1, m1; l2, m2) =
I (l2, m2; l1, m1).
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