Comment on `A single-sum expression for the overlap integral of two associated Legendre polynomials'

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 354187
(http://iopscience.iop.org/0305-4470/35/18/401)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 02/06/2010 at 10:03

Please note that terms and conditions apply.

COMMENT

Comment on 'A single-sum expression for the overlap integral of two associated Legendre polynomials’

Shi-Hai Dong
Instituto de Ciencias Nucleares, UNAM, A.P. 70-543, Circuito Exterior, C.U., 04510 Mexico, D.F., Mexico
E-mail: dongsh2@yahoo.com

Received 21 January 2001, in final form 21 February 2002
Published 26 April 2002
Online at stacks.iop.org/JPhysA/35/4187

Abstract

The overlap integral of two associated Legendre polynomials (ALPs) presented by Mavromatis (Mavromatis H A 1999 J. Phys. A: Math. Gen. 32 2601) is revised. The results are valid for any product of two ALPs with arbitrary degree l and order m.

PACS numbers: 02.30.Gp and 02.30.Sa

The overlap integral of $P_{l_{1}}^{m_{1}}(x)$ and $P_{l_{2}}^{m_{2}}(x)$ in the interval $[-1,1]$ is well known only for the special case $m_{1}=m_{2}$ [1]. However, we cannot find the overlap integral of two ALPs for the general case $l_{1} \neq l_{2}$ and $m_{1} \neq m_{2}$, namely,

$$
\begin{equation*}
I\left(l_{1}, m_{1} ; l_{2}, m_{2}\right)=\int_{-1}^{1} P_{l_{1}}^{m_{1}}(x) P_{l_{2}}^{m_{2}}(x) \mathrm{d} x . \tag{1}
\end{equation*}
$$

Recently a closed expression of the overlap integral of two ALPs involving a single sum has been derived from equations (5) and (6) given in [2]. The final result given in (7) of [2], however, is invalid for arbitrary m_{1} and m_{2}. When $\left(-m_{1}+m_{2}\right)$ is negative, the phase $(-1)^{m_{1}}$ involved in $C\left(l_{1}, m_{1} ; l_{2}, m_{2}\right)$ of equation (7) in [2] should be changed to $(-1)^{m_{2}}$. This is a consequence of the restriction $m \geqslant 0$ required by equation (5) of [2]. Hence the use of equation (5) of [2] will be invalid for the negative $\left(-m_{1}+m_{2}\right)$. The coefficients a_{k} are evaluated explicitly in [3], where

$$
\begin{equation*}
P_{n}^{\alpha, \beta}(x) P_{m}^{\gamma, \delta}(x)=\sum_{k=0}^{m+n} a_{k} P_{k}^{\lambda, \mu}(x) \tag{2}
\end{equation*}
$$

The formula given in [2] is the special case $\lambda=\mu=0, \alpha=\beta$ and $\gamma=\delta$.

For completeness we write out the correct result as

$$
\begin{align*}
I\left(l_{1}, m_{1} ; l_{2}, m_{2}\right) & =A\left(l_{1}, m_{1} ; l_{2}, m_{2}\right) \sum_{l} D\left(\left|m_{2}-m_{1}\right|, l\right)(2 l+1) \\
& \times\left(\begin{array}{ccc}
l_{1} & l_{2} & l \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l_{1} & l_{2} & l \\
-m_{1} & m_{2} & m_{1}-m_{2}
\end{array}\right), \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
A\left(l_{1}, m_{1} ; l_{2}, m_{2}\right)=(-1)^{\tau}\left|m_{2}-m_{1}\right| 2^{\left|m_{2}-m_{1}\right|-2} \sqrt{\frac{\left(l_{1}+m_{1}\right)!\left(l_{2}+m_{2}\right)!}{\left(l_{1}-m_{1}\right)!\left(l_{2}-m_{2}\right)!}}, \tag{4}
\end{equation*}
$$

$D\left(\left|m_{2}-m_{1}\right|, l\right)$ is given in (7) of [2] and τ takes the following values:

$$
\tau=\left\{\begin{array}{lll}
m_{1}, & \text { if } & m_{2} \geqslant m_{1} \tag{5}\\
m_{2}, & \text { if } & m_{2}<m_{1}
\end{array}\right.
$$

This result differs from equation (7) of [2] for the phase factor. The two cases of τ were not considered in [2]. This result can also be understood from the symmetry $I\left(l_{1}, m_{1} ; l_{2}, m_{2}\right)=$ $I\left(l_{2}, m_{2} ; l_{1}, m_{1}\right)$.

Acknowledgments

S H Dong thanks Professor A Frank for hospitality at UNAM. This work is supported by CONACyT, Mexico, under project 32397-E.

References

[1] Gradshteyn I S and Ryzhik I M 1994 Tables of Integrals, Series and Products (New York: Academic)
[2] Mavromatis H A 1999 J. Phys. A: Math. Gen. 32 2601, and references therein
[3] Vilenkin N J 1968 Special Functions and the Theory of Group Representations (Providence, RI: American Mathematical Society)

